


INTRODUCTION

In a previous paper by Walton, Nachman and Schapery [1l], hereafter
referred to as WNS, simple closed form solutions were obtained for the
2-dimensional problem of a rigid indentor sliding over a power law
viscoelastic halfspace. In this paper similar techniques are used to
obtain an analytical solution to the problem of the propagation by a
rigid wedge of a 2-dimensional crack in an infinite power law material.

This particular problem is an example of a physically realizable

mode of fracture to which the correspondence principle does not apply.

Moreover, the closed form solutions obtained here provide a method for
experimentally determining physical parameters, such as the stress g
intensity factor, important for an understanding of fracture phenomena.

This problem has been studied extensively for elastic material, a
detailed description of which appears in the article by Barenblatt [2].
The wedging problem was considered by Barenblatt for two reasons. In

general, Barenblatt addressed himself to the issues of unrealistic

singular crack tip stresses and indeterminant crack lengths encountered
in fracture in classical linear elasticity. The wedge problem exhibits
both features even though the crack is "semi-infinite" since the free
crack surface ahead of the wedge is finite. 1In particular, the thrust
of Barenblatt's article is that in a neighborhood of the crack tip,

the separated surfaces experience cohesive molecular forces which

produce a cusp profile and a finite stress field. Barenblatt accounts




for this by the phenomenological expedient of assuming that for
equilibrium cracks a cohesive normal traction acts over a small
interval behind the crack tip with a constant stress intensity factor
characteristic of the material. As noted by Barenblatt, the finite
crack length is determined by merely knowing this stress intensity
factor and is independent of the actual distribution of cohesive forces.
The utility of this observation lies in reversing the implication.
Namely, if experimentally a wedge is driven into an elastic material
and the length of the free surface of the resultant equilibrium crack
is measured, then the stress intensity factor may be easily calculated.

Here we provided simple closed form expressions for the stress
and displacement fields for the wedging of a power law viscoelastic
material under the Barenblatt hypothesis. This analysis culminates
in a relation among the material parameters, the material stress
intensity factor and the length of the free crack surface.

Mathematically, the wedging problem reduces to a set of dual
integral equations which in a sense are inverse to those considered in
WNS. These equations are first solved without the Barenblatt hypothesis
to simply see what the stress and displacement fields are for a power
law viscoelastic material.

It was observed that the nature of the crack tip profile is
dependent on the material whereas the nature of the stress singularity

is not. 1In particular, the classical square root singularity in the
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normal stress occurs for all materials, whereas crack tip profiles
range from near square root (as in the elastic case) to cusp-like.
Hence, singular stresses can occur even in the presence of a smoothly
closed crack. With the addition of the Barenblatt hypothesis, the

unknown crack length is then determined.




SECTION 1.

half plane only.

employed in WNS [1].
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and the boundary conditions

Txy(x, 0, t) =0

v(x, 0, t) =‘{

o] , 0, t) =0
y(x » t)

Here v(x, y, t) and u(x, y, t)

displacements,

FORMULATION OF THE PROBLEM.

We now consider the problem of the steady translation to the left
(with velocity U) of a rigid 2-dimensional symmetric wedge with finite
asymptotic thickness in an infinite power law viscoelastic body.
Fig. 1.) Due to symmetry, we may consider the problem for the upper

The notation adopted here is consistent with that

Neglecting inertia, the force balance equations are

-0 < ¥ < ®

x < Ut

x > 22 + Ut

Ut < x < 22 + Ut.

are the vertical and horizontal

are the normal stresses on x=constant
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and C 1is an arbitrary constant of integration. Equation (5) is the
equation considered in WNS [1] with & replaced by 1 - a. Its
solution may be obtained either by the methods employed there or by
that of Samko [3]. We adopt the former approach. However, the details
of the derivation of the solution will be omitted since the essential
ideas are contained in WNS [1].

We remark that for technical reasons a straight substitution into
the formulas derived in WNS [1] cannot be used to solve the example
considered in the next section since it results in divergent integrals.
It proves more convenient to solve the corresponding Riemann-Hilbert
boundary value problem in the class of functions unbounded at both

s =0 and s = QZ’ thereby introducing an extra arbitrary parameter,

K, which is later specified by imposing continuity conditions. The
details will be omitted and only the final results presented.
It may be shown by the method employed in WNS [1] that v'(s)

must satisfy the ordinary Abel equation

S 1
J v (t)dt = Hl(s) 0 <s < 22 (6)
0 (s-t)°
with
H1(S) ¥ KS—l/Z(EZ_S)llz—a B(u,al-a)
. 11/2(2 _T)a-1/2 )
-1/2 1/2-a T(1-a) 2 2
- s (lz-s) . I (T~8) F(t)dr.

0

The integral in (7) is a Cauchy principal value.
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The function v(s) is easily determined from (6) to be

s H, (t)dt
1 J 1 @)

viay -» B(a, 1-a) 0 (s—t)l-a

where B(e¢, ) denotes the beta function. The parameters K, C and
22/21 are then chosen so as to insure the continuity of v(s) at

s =0, &, and v'(s) at ¢

2 2
In the next section, an example is considered for which a simple
closed form solution is obtained for v(s). We close this section with

a useful observation. Once v(s) is determined, g(s) for s < 0

is easily calculated from (4). In particular, we have

g(s) = "f,“)j—sj ) gy, 9
0 (y-s)

It may be shown from (7) that K and C can be chosen so that

sa+1/2 v

v(s) = A vl(s) (10)

where vl'(s) is continuous at s = 0. Hence for 0 < a < 1/2,

v(s) has a vertical tangent at the crack tip, s = 0, and from (9)
-1/2
iy

it follows that g(s) = 0(|s as s approaches zero from the left.
It is apparent that (10) is also valid for 1/2 < a < 1.
Consequently, for a = 1/2 the free crack faces meet at a sharp corner

and there results a square root singularity in the normal stress ahead
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of the crack tip. However, for a > 1/2, the crack surfaces form a
cusp (i.e. close smoothly) with the normal stress still having a
square root singularity. (See Fig. 1.) This is in marked contrast

to the behavior of elastic materials.
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SECTION 2. AN EXAMPLE.

To illustrate the technique of the previous section we choose a
wedge shape, f(s), for which the Cauchy integral in (7) is easily

computed. Specifically, for 0 < a < 1/2 we take

£(s) = KIL ~ (s/nl)“'l], s > 2. The fact that the wedge profile

depends on o does not impose a serious limitation on the usefulness

13

of the example, since the shape of f(s) is qualitatively the same for

all values of a.

With this choice of £f(s), the function F(tr) in (5) becomes

L) o ol - (1-1/2,)'7.

F(t) = C -

The Cauchy integral in (7) may now be evaluated, and after some

manipulation yields

[ 11/2(2 _T)a-l/Z
i
0 (1-s
- © Bla*l/2, 1/2)12“(1-s/zz)“‘1/22F1(1/2+a, ~1/2; 1/2; s/2,)
(11)
I(a+1/2)T(~1/2) a-1/2 et
- Ah > (1—8/22) 2F1(1/2+u, 1/2, 3/2, 8/12)

AhT'(a),

where the parameter A is defined by

PN
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A o= (zllzz)l"a. (12)

After substitution of (11) into (7), the integral in (8) may be

computed from which it follows that

v(s) = (keamy BB (570 )2 5 (au1/2, 1/2; a41/2; s/s,)

a=-1/2 /2

- Tray (811" A - s/ay)t (13)

a-1/2

- AhZ(s/lZ) 2F1(1/2, 1/2; 3/2; 8/22).

For convenience, we define a new variable z by 2z = s/!.2 and
consider v(s) as @ function of 2z, denoted ¥(z). To determine C,
K and )\ we impose continuity for v(z) near z =0, 1 and for
Vv'(z) near z = 1. It is readily seen that near z = 0 v(z) has

the following form

$(2) = €212 4 ¢ %M2 4 92"/,
where
anzu
Cl = B(a, 1/2) (K+Xh) - ??E:IT - 2)\h
and
a

Cni
a-1/2 2 Ah
%" Mo U3 Reiy TN e o
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A similar analysis near z = 1 yields

§(2) = D + n2(1-z)1’2 + 0((1-2)3/2 (16)
with

D1 = K (17)
and

D, = (K+Ah)B(1/2, a)(1-2a) - —=— 3.% + 2Ah (18)

2 s %) = Tlel) *2 :

Continuity of ¥(z) at z =0 and z =1 require that C; =0 and
D1 = f(lz) = h(1-1), and continuity of v'(z) at z =1 follows from

02 = 0. Hence, we obtain the relations

o

" I(et1)r(1/2)h(1-a) dn
r'(a) I'(a+1/2)

- I(3/2)r(e+1) ;
A T (ati/2) (20)

The constants K and )X are determined explicitly, whereas C and
lz occur coupled in relation (19). The addition of the Barenblatt

assumption, discussed in the next section, will provide the required

extra relation for the determination of C and 22.

It should be noted that the coefficient C2 becomes
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. 2MQ/)T(a+)A-a)h _ 4 .. (l-a
©2 T T T(3/2%) 3 3 % ey (21)

which 1s clearly non-zero. This verifies line (10) in section 1 and

hence the subsequent discussion on the nature of the singular normal

stress.
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SECTION 3. THE BARENBLATT HYPOTHESIS.

The Barenblatt hypothesis is that, for an equilibrium crack,
forces of cohesion act on the separated crack surfaces within a small
neighborhood of the crack tip to effect a smoothly closed crack and a
cancellation of the singular normal stresses ahead of the crack tip.
It is further assumed that the stress intensity factor corresponding
to these cohesive forces is an intrinsic property of the material
and, in particular, is independent of the length of the interval on
which the forces act. The Barenblatt hypothesis is encorporated into
the model discussed in section 2 by amending the stress free normal

boundary condition as follows:
oy'(ss ) = P(S) 0 <s < "29

where p(s) 1is some distribution of cohesive normal tractions which
vanishes for s >d and d is a small positive number. The tractions
p(s) are assumed to have a known stress intensity factor, L, given
by
14 pee)
L = ; J .ﬂs_ ds.
0 Vs

It is clear that the dual integral equations (1) and (2) are still

valid. However, the generalized Abel equation (5) becomes
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LS ' '
I'(a) I 2 v (t)de + COS(GT[)IS vi(t)de = F.(s) (22)
w s (t-s)® 0 (s-t)° %
0 <s < 22
where
Fi(s) = F(s) - Q(s), (23)
d
Q(s) = - f q(t)de 0<s<d (24)
S
and
a(s) = 2(1-v¥)p(s)/ (UPEr(1-a)). . (25)

Equation (22) may be reduced, as before, to the ordinary Abel

equation

S ¢
fo DL Ly (o) - Hy(e), (26)

(s-t)°

where Hl(s) is given by (7) and
a-1/2

Tl/
Hy(s) = -s“l/z(zz-s)

2
1/2-a T'(1-a) Izz o Q(t)dr.  (27)

™ 0 (t-s)

Solving (26) we obtain, finally,

1 s Hl(t)dt 8 Hz(t)dt
e = ¥ f = fo'(';)—x: : N

0 (s-t)1™®
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A few comments are now in order. As is well-known (Barenblatt [2]),
it is the stress intensity factor, L, rather than the actual
distribution of tractions, p(s), that enters into an analysis of
stresses at the crack tip and a determination of the free crack length,
%,. Moreover, we shall show that, if d/!.2 is small, then the
displacement field is essentially independent of p(s). Consequently,
for illustrative purposes, we shall assume that p(s) 1is equal to a
constant, p, on 0 < s < d.

Returning to the computation of v(s), we denote the constant

function q(s) 1in (25) by q and observe that Q(s) in (24) becomes
Q(s) = q(s-d) 0<s<d.

Substitution of Q(s) into (27) yields

d 1/2 a~-1/2

£.-T) (t-d)
Lo =i 1/2-a_ I'(1-a) (*,
Hz(S) s (9'2 S) q - o (T"S) dr. (29)
a-1/2
Due to the presence of (22-1) in the integrand, the Cauchy

integral in (29) cannot be evaluated simply. Since we
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ultimately will let d/f, tend to zero, we may substitute 220—112
for (1,-0%? 1 29).
Given this simplification, HZ(S) becomes
() = (s/) 2 - o/p,)t/P0q I
d B(2, 1/2)2F1(-3/2, 1; 1/2; s/d) 0<s<d

~d(s/d) " B(2, 3/2),F, (1, 3/2; 7/2; dls) d < s.

To analyse v(s) in (28) we introduce some notation. Let vl(s)
denote the displacement corresponding to a free crack surface, i.e.

without the Barenblatt hypothesis. Then

vl(s) 0<s<2®

1 s Hl(t)dt
1-a 2

B(a, 1-a) 0 (a=t)

and is given explicitly by (13). Let vz(s) be given by

1 IS Hz(t)dt

vy (s) B(a, 1-a)

0 (s-t)™®
As in the preceeding section, it is convenient here to define new
variables z = s/!L2 and ¢ = d/z2 and let V, 61 and ¥, denote the

corresponding functions of 2z and €. Moreover, we introduce the

parameter

—————————
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2 d1/2
m

o L 2(1-v%)/ (v*Er(1-a))

1

where L 1is the stress intensity factor corresponding to the cohesive
tractions p(s) on (0, d).

It is now a simple matter, albeit tedious, to substitute the
expression for Hz(s) into (28) and compute the necessary integrals,
keeping in mind that Hz(s) is defined differently on (0, d) and

(d, 12). However, our ultimate goal is the determination of &, and

1
22 for which we need only consider the asymptotic form of W#(z) for
z near 0 and 1. Moreover, we are assuming € to be small, and
hence shall combine all terms which vanish as € + 0 into a single
residual term.

We first consider the asymptotics of ¥(z) for 2z near zero, in

particular we take z < ¢. It may be shown that

a+l/2 a-1/2

n

¥,(2)

a+l/2_a+l/2
2 z

3B(a, 3/2)% 2Fl(a-1/2, 3/2; 3/24a; 2)

z 3/2 1/2-a
+ 12, 1/2+a J (t/e)”' “(1-t)

2 0 (z-t)l-a
0 <

a+3/2

a-1/2 a+l/2
3z + Ckz

= C + 0(z )

(2L1/3F(a))[eB(a, 1/2)22 z 2Fl(a—1/2. 1/2;

2F1(1/2. 1; 5/2; t/e)dt]

21

a+l/2; z)

zZ < e

(30)




¢y = Ly /3esy /2 /1 (e1/2)

¢, = 1/26,(a=1/2)/(at1/2) - L2321 (1/2) /T (o43/2).

Since W(z) = ﬁl(z) - 62(2) we obtain for 0 < z < ¢

a-1/2 a+l/2 a+3/2

+ 0(z

v(z) = (Cl-CB)z )

+ (CZ-C“)z
For finite stress we require

Oy = C3 =0

C, - C4 = 0.

A similar analysis must be performed for =z near

first that, 1f ¢ <z < 1,

‘72(2) = 63(2) + \74(2)

Hz(t)dt

Ly
%(2) = S f;

(z-t)l-“
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and
a -~
04(2) i B(azzl-a) Jz HZ(t):ia i
¥ e (z-t)

Clearly 63(2) is smooth for z near 1 and is negligible for
€ << 1. For 64(2) we obtain

#,(z) = D, + D, (1-2)2 + 0((1-2)3%)

4 3 4
with

D3 = D4 = 0(e). (34)

To verify (34), we need only observe that
¥,(2) = (457%B(2, 3/2)e/nT(a))
z 3/2 1/2-a
.J (e/t) (i-tl' F. (1, 3/2; 7/2; elt)dt.
- 271
€ (z-t)
Since (e/t)3/22Fl(1, 3/2; 7/2; €/t) 1is uniformly bounded for
€ <t <z <1, the estimate (34) 1is now evident.
For continuity of ¥(z) and ¥'(z) at 2z =1 we require

D1 - D3 = f(!.z) = h(1l-1)
and (35)

Dz o D" = 0.

R T p—
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Combining (31), (32), (33), (34) and (35), we arrive, finally, at the
relations

K = h(1-)) + 0(e),

A = T'(3/2)T(1+a)/T(1/2+a) + 0(e),

CWZ;

(o) = I'(1+a)T(1/2)h(1-a)/T(1/24a) + 0(c)

o)

and

S - /-Gt 1. (36)

We remark again that line (36) provides a means of experimentally
determining the stress intensity for an equilibrium crack. Indeed,
from (36) it follows that the stress intensity factor, L, associated
with the cohesive tractions (which, under the Barenblatt assumption,
is equal in magnitude but opposite in sign to the usual stress intensity
factor for a free crack surface) is related to the wedge speed, U,

and crack length, 22, by

-a-1/2

e

L = =(1/3)hI'(1+a) T (24+a) U%EL

Hence, for given speed U, the stress intensity factor L 1is easily

computed once the length of the crack, 22, has been measured.

PR




A few comments on the stress and displacement field under the

Barenblatt hypothesis are in order. Outside of a neighborhood of

order € centered at the crack tip, the stress and displacement fields
are merely a perturbation of order € from the stress and displacement
fields corresponding to a free crack surface (i.e. without a

Barenblatt zone). It is only on an interval of order ¢ that the
displacement profile suddenly becomes cusp-like and the stress
distribution falls off rapidly to zero. In the limit ¢ = 0, (though
keeping L constant) the stress and displacement fields are identical
with those of a free crack, every where. However, unlike the problem
posed with a free crack surface, we are still able to determine the

crack length, 22, explicitly.

sl
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Figure 1. Displacement fields for 0 < a < 1/2 (———),

a=1/2(~——=) and 1/2 < a <1 (----=).
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